Model for the interpretation of hyperspectral remote-sensing reflectance.
نویسندگان
چکیده
Remote-sensing reflectance is easier to interpret for the open ocean than for coastal regions because the optical signals are highly coupled to the phytoplankton (e.g., chlorophyll) concentrations. For estuarine or coastal waters, variable terrigenous colored dissolved organic matter (CDOM), suspended sediments, and bottom reflectance, all factors that do not covary with the pigment concentration, confound data interpretation. In this research, remote-sensing reflectance models are suggested for coastal waters, to which contributions that are due to bottom reflectance, CDOM fluorescence, and water Raman scattering are included. Through the use of two parameters to model the combination of the backscattering coefficient and the Q factor, excellent agreement was achieved between the measured and modeled remote-sensing reflectance for waters from the West Florida Shelf to the Mississippi River plume. These waters cover a range of chlorophyll of 0.2-40 mg/m(3) and gelbstoff absorption at 440 nm from 0.02-0.4 m(-1). Data with a spectral resolution of 10 nm or better, which is consistent with that provided by the airborne visible and infrared imaging spectrometer (AVIRIS) and spacecraft spectrometers, were used in the model evaluation.
منابع مشابه
Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملLong-term agroecosystem research in the central Mississippi river basin: hyperspectral remote sensing of reservoir water quality.
In situ methods for estimating water quality parameters would facilitate efforts in spatial and temporal monitoring, and optical reflectance sensing has shown potential in this regard, particularly for chlorophyll, suspended sediment, and turbidity. The objective of this research was to develop and evaluate relationships between hyperspectral remote sensing and lake water quality parameters-chl...
متن کاملEvaluating Different Methods for Grass Nutrient Estimation from Canopy Hyperspectral Reflectance
The characterization of plant nutrients is important to understand the process of plant growth in natural ecosystems. This study attempted to evaluate the performances of univariate linear regression with various vegetation indices (VIs) and multivariate regression methods in estimating grass nutrients (i.e., nitrogen (N) and phosphorus (P)) with canopy hyperspectral reflectance. Synthetically ...
متن کاملAbsorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance
For a data set collected around Baja California with chlorophyll-a concentration ((chl-a)) ranging from 0.16 to 11.3 mg/m, hyperspectral absorption spectra of phytoplankton pigments were independently inverted from hyperspectral remote-sensing reflectance using a newly developed ocean-color algorithm. The derived spectra were then compared with those measured from water samples using the filter...
متن کاملAnalysis of MERIS Reflectance Algorithms for Estimating Chlorophyll-a Concentration in a Brazilian Reservoir
Chlorophyll-a (chl-a) is a central water quality parameter that has been estimated through remote sensing bio-optical models. This work evaluated the performance of three well established reflectance based bio-optical algorithms to retrieve chl-a from in situ hyperspectral remote sensing reflectance datasets collected during three field campaigns in the Funil reservoir (Rio de Janeiro, Brazil)....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 33 24 شماره
صفحات -
تاریخ انتشار 1994